Origins of cheating and loss of symbiosis in wild Bradyrhizobium.

نویسندگان

  • J L Sachs
  • M O Ehinger
  • E L Simms
چکیده

Rhizobial bacteria nodulate legume roots and fix nitrogen in exchange for photosynthates. These symbionts are infectiously acquired from the environment and in such cases selection models predict evolutionary spread of uncooperative mutants. Uncooperative rhizobia - including nonfixing and non-nodulating strains - appear common in agriculture, yet their population biology and origins remain unknown in natural soils. Here, a phylogenetically broad sample of 62 wild-collected rhizobial isolates was experimentally inoculated onto Lotus strigosus to assess their nodulation ability and effects on host growth. A cheater strain was discovered that proliferated in host tissue while offering no benefit; its fitness was superior to that of beneficial strains. Phylogenetic reconstruction of Bradyrhizobium rDNA and transmissible symbiosis-island loci suggest that the cheater evolved via symbiotic gene transfer. Many strains were also identified that failed to nodulate L. strigosus, and it appears that nodulation ability on this host has been recurrently lost in the symbiont population. This is the first study to reveal the adaptive nature of rhizobial cheating and to trace the evolutionary origins of uncooperative rhizobial mutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Formation of Nitrogen-Fixing Bacteroids Is Delayed but Not Abolished in Soybean Infected by an [alpha]-Ketoglutarate Dehydrogenase-Deficient Mutant of Bradyrhizobium japonicum.

A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained...

متن کامل

A dominant-negative fur mutation in Bradyrhizobium japonicum.

In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. ...

متن کامل

Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum

Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally...

متن کامل

Isolation and Characterization of a Competition-Defective Bradyrhizobium japonicum Mutant.

Tn5 mutagenesis was coupled with a competition assay to isolate mutants of Bradyrhizobium japonicum defective in competitive nodulation. A double selection procedure was used, screening first for altered extracellular polysaccharide production (nonmucoid colony morphology) and then for decreased competitive ability. One mutant, which was examined in detail, was deficient in acidic polysaccharid...

متن کامل

New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR.

RegSR-like proteins, members of the family of two-component regulatory systems, are present in a large number of proteobacteria in which they globally control gene expression mostly in a redox-responsive manner. The controlled target genes feature an enormous functional diversity. In Bradyrhizobium japonicum, the facultative root nodule symbiont of soybean, RegSR activate the transcription of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of evolutionary biology

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2010